بررسی تأثیر دمای هوا، دمای همبستۀ رنگ نور و شدت نور محیطی بر احساس آسایش حرارتی دانشجویان در فضای کتابخانه

نوع مقاله : علمی پژوهشی

نویسنده

استادیار، گروه معماری، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران

چکیده

احساس آسایش حرارتی در فضاهای آموزشی، یکی از عوامل کلیدی مؤثر بر کیفیت یادگیری و بهره‌وری دانشجویان است. وضعیت نامناسب وضعیت دما و نور می‌تواند باعث نارضایتی حرارتی، کاهش تمرکز، خستگی زودرس و افت یادگیری شود. ازاین‌رو، ایجاد محیطی با آسایش حرارتی مطلوب نه‌تنها بر رفاه دانشجویان تأثیر می‌گذارد، بلکه یک الزام اساسی در معماری فضاهای آموزشی به ‌شمار می‌رود. هدف پژوهش حاضر، بررسی تأثیر تجربی سطوح متغیرهای دمای محیط (۲۰، ۲۵ و ۳۰ درجۀ سانتی‌گراد)، شدت نور (200، 400 و 600 لوکس) و دمای همبستۀ رنگ نور محیطی (۲۷۰۰، ۴۰۰۰ و ۷۸۰۰ کلوین) بر احساس آسایش حرارتی دانشجویان حین انجام مطالعه در اتاقک اقلیمی آزمایشگاهی است. این پژوهش با استفاده از آنالیز واریانس سه‌طرفه (ANOVA) بین‌گروهی طی بازۀ زمانی چهارماهه (آذر تا اسفند ۱۴۰۳) با مشارکت ۹۰ دانشجوی مرد در شهر ایلام انجام شد و با استفاده از نرم‌افزار SPSS نسخۀ ۲۷ تحلیل گردید. یافته‌ها نشان داد در دماهای همبستۀ رنگ نور 2700 کلوین (دمای محیط 25 درجه و شدت نور 200، 400 و 600 لوکس)، 4000 کلوین (شدت نور 600 لوکس) و 7800 کلوین (دمای محیط 20 درجه) تأثیر معناداری بر احساس آسایش حرارتی دانشجویان حین انجام مطالعه دارند (p<0.05). دمای محیطی سالن مطالعه و دمای همبستۀ رنگ نور محیطی به‌طور مستقل و همچنین اثر ترکیبی دمای محیطی با شدت نور محیطی و دمای رنگ نور، نقش مهم و معنی‌داری در تغییر احساس آسایش حرارتی دانشجویان دارند. شدت نور محیطی به‌تنهایی تأثیر قابل توجهی ندارد اما در تعامل با دمای محیطی می‌تواند مؤثر باشد. نتایج نشان داد که دمای محیط و دمای همبستۀ رنگ نور محیطی هر دو تأثیر معنی‌داری بر احساس آسایش حرارتی دانشجویان در فضای کتابخانه دارند (p<0.05) و این تأثیرات با تغییر شدت نور محیطی (200، 400 و 600 لوکس) متفاوت است. در شدت نور 200 لوکس، گروه 4000 کلوین با دو گروه دیگر متفاوت است، اما در 400 لوکس، اثر ترکیبی دو فاکتور مشاهده شد و بیشترین آسایش حرارتی دانشجویان مربوط به دمای همبستۀ رنگ نور 2700 کلوین است. در شدت نور 600 لوکس، تنها گروه با دمای رنگ نور بالا (7800 کلوین) آسایش حرارتی بیشتری نسبت به دیگر گروه‌ها داشت. بنابراین، تأثیر دمای رنگ نور بر آسایش حرارتی، با تغییر شدت نور محیط و دمای محیط متغیر است و در هر شرایط، سطوح مختلف دمای رنگ نور اثر متفاوتی دارند.

کلیدواژه‌ها


اصفهان، آیباغی، کوروش مؤمنی، و فرامرز حسن‌پور. 1400. بررسی تأثیر جهت‌گیری ساختمان بر مصرف انرژی سالیانه در مدارس نواحی گرم و خشک ایران با استفاده از مدل‌سازی اقلیمی؛ مورد مطالعاتی: بررسی مدرسۀ تیپ دوکلاسه. معماری و شهرسازی آرمان‌شهر 14 (34): 27ـ46.
برمنش، فاطمه، کارن فتاحی، مجتبی نوراللهی، و احمد ملکشاهی. 1403. بررسی نقش جریان و رطوبت نسبی هوا در فرسایش قلعۀ تاریخی والی شهر ایلام به روش محاسباتی دینامیک سیالات. مطالعات معماری ایران 13 (25): 79ـ95.
فتاحی، کارن، و مریم بیگی. 1404. بررسی وضعیت آسایش حرارتی سالمندان متأثر از تنوع دامنۀ دمایی، نوع و میزان صدای محیط. نشریۀ طول عمر 2 (4): 53ـ73.
فولادی، بهزاد، علویه زینب موسویان اصل، مجتبی شگرد، خدیجه پورش، و حنان ساری. 1396. اندازه‌گیری شدت روشنایی مدارس ابتدایی شهرستان اهواز و مقایسۀ آن با مقادیر استاندارد در سال 1396. فصلنامۀ بهداشت کار و ارتقای سلامت 3 (1): 84ـ96.
 Agency, International Energy. 2011. Energy-efficient buildings: Heating and cooling equipment. OECD Publishing.
 Ardiatma, Angger Dwi, and Benfano Soewito. 2023. IOT Based Indoor Lighting Performance of Led With Different Color Temperatures System Based on Human Activity. Jurnal Syntax Admiration 4 s(7): 1007-1024.
 Arroyo, Yesica Paola Villarreal, Rita Peñabaena-Niebles, and Carmen Berdugo Correa. 2023. Influence of environmental conditions on students' learning processes: A systematic review. Building and Environment, 231: 110051. https://doi.org/10.1016/j.buildenv.2023.110051
 Azmoon, Hiva, Habibollah Dehghan, Jafar Akbari, and Shiva Souri. 2013. The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses. Journal of environmental and public health 2013 (1): 639184. https://doi.org/10.1155/2013/639184
Balali, Amirhossein, Akilu Yunusa-Kaltungo, and Rodger Edwards. 2023. A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques. Renewable and Sustainable Energy Reviews, no. 171: 113013. https://doi.org/10.1016/j.rser.2022.113013
 Barrett, Peter, Fay Davies, Yufan Zhang , and Lucinda Barrett. 2015. The impact of classroom design on pupils' learning: Final results of a holistic, multi-level analysis. Building and Environment, no. 89: 118-133 https://doi.org/10.1016/j.buildenv.2015.02.013.
 Bellia, Laura, Francesca Romana d'Ambrosio Alfano, Francesca Fragliasso, Boris Igor Palella, and Giuseppe Riccio. 2021. On the interaction between lighting and thermal comfort: An integrated approach to IEQ.Energy and Buildings, no. 231: 110570. https://doi.org/10.1016/j.enbuild.2020.110570
 Bellia, Laura, Fabio Bisegna, and Gennaro Spada. 2011. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Building and Environment 46(10): 1984-1992. https://doi.org/10.1016/j.buildenv.2011.04.007
 Bluyssen, Philomena M. 2017. Health, comfort and performance of children in classrooms–new directions for research. Indoor and Built environment 26 (8), 1040-1050. https://doi.org/10.1177/1420326X16661866
 Brambilla, Arianna, Wenye Hu, Reza Samangouei, Rebecca Cadorin, and Wendy Davis. 2020. How correlated colour temperature manipulates human thermal perception and comfort. Building and Environment, no. 177: 106929. https://doi.org/10.1016/j.buildenv.2020.106929
 Brink, Henk W, Stefan C.M Lechner, Marcel G.L.C Loomans, Mark P Mobach, and Helianthe S.M. Kort 2024. Understanding how indoor environmental classroom conditions influence academic performance in higher education. Facilities 42 (3-4): 185-200.https://doi.org/10.1108/F-12-2022-0164
 Chinazzo, Giorgia, Luisa Pastore, Jan Wienold, and Marilyne Andersen. 2018. A field study investigation on the influence of light level on subjective thermal perception in different seasons. Proceedings of the tenth Windsor Conference, p. 12-15.
 Chinazzo, Giorgia , JanWienold , and Marilyne Andersen. 2019. Daylight affects human thermal perception. Scientific reports 9 (1): 13690. https://doi.org/10.1038/s41598-019-48963-y
 Chriswardana, Marcelinus, H Hadiyanto, and Wahyu Zuli Pratiwi. 2022. Optimization of Light intensity and Color Temperature in The Cultivation of Chlorella Vulgaris Culture Using the Surface Response Method. Journal of Bioresources and Environmental Sciences, 1.2: 33-41
 De Kort, YAW , and  KCHJ Smolders. 2010. Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings. Lighting Research & Technology 42 (3): 345-360. https://doi.org/10.1177/1477153510378150
 Fantozzi, Fabio, Hassan Hamdi, Michele Rocca, and Stefano Vegnuti. 2019. Use of automated control systems and advanced energy simulations in the design of climate responsive educational building for mediterranean area. Sustainability 11 (6): 1660. https://doi.org/10.3390/su11061660
 Fatahi, Karen, and maryam beigi. 2025. Investigating the role of activity duration, sense of comfort, and thermal adaptation on cognitive performance and general fatigue of healthcare workers (Case study: Hospital workers in Ilam).Alborz University Medical Journal 14 (3): 233-245. https://doi.org/10.61186/aums.14.3.233
 Fatahi, Karen, and Maryam Beigi. 2024. Assessing the state of cognitive performance of employees and determining the range of thermal comfort of different genders in Ilam hospitals. Occupational Medicine Quarterly Journal 16 (3): 27-41. https://doi.org/10.18502/tkj.v16i3.16873
 Fatahi, Karen, nazanin Nasrollahi, Maryam Ansarimanesh, jamal Khodakarami, and Ali Omranipour. 2021. The Role of Influential Factors in the Possibility of Human Thermal Comfort in Historical Texture of Kashan. Journal of Architecture in Hot and Dry Climate 8 (12): 127-146.10.29252/ahdc.2021.14689.1396
 Fatahi, Karen, Nazanin Nasrullahi, Maryam Ansarimanesh, jamal Khodakarami, and Ali Emranipour. 2021. Investigating the role of geometry and type of urban open space on thermal comfort and environmental quality (Case study: Kashan historical part). Motaleate Shahri 10 (39): 69-82. https://doi.org/10.34785/j011.2021.138
 Fu, Xiaoyun, Di Feng, Xu Jiang, and Tingting Wu. 2023. The effect of correlated color temperature and illumination level of LED lighting on visual comfort during sustained attention activities. Sustainability 15 (4): 3826. https://doi.org/10.3390/su15043826
 Hajibabaei, Majid, Samira Kord, and Ezat Rasooli. 2014. Comparison of different methods of measuring illuminance in the indoor of office and educational buildings. Jundishapur Journal of Health Sciences 6 (3): 1-6. DOI: 10.5812/jjhs.21720
 Huebner, Gesche M, David T Shipworth, Stephanie M Gauthier, Christoph Witzel, PeterJ Raynham, and W Chan. 2016. Saving energy with light? Experimental studies assessing the impact of colour temperature on thermal comfort. Energy Research & Social Science, no. 15: 45-57. https://doi.org/10.1016/j.erss.2016.02.008
 Jahangiri, Hamid, Reza Kazemi, Hamidreza Mokarami, and Andrew Smith. 2023. Visual ergonomics, performance and the mediating role of eye discomfort: a structural equation modelling approach.International journal of occupational safety and ergonomics 29 (3): 1075-1079. https://doi.org/10.1080/10803548.2022.2111885
 Kim, Hakpyeong, Taehoon Hong, Jimin  Kim, and Seungkeun Yeom. 2020. A psychophysiological effect of indoor thermal condition on college students’ learning performance through EEG measurement.Building and Environment, no. 184: 107223. https://doi.org/10.1016/j.buildenv.2020.107223
 Klepeis, Neil Edward , William C Nelson, WayneOtt, and John P Robinson. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of exposure science & environmental epidemiology, 11.3: 231-252. https://doi.org/10.1038/sj.jea.7500165
 Kompier, Maaike, Karin Smolders, and Yvonne de Kort. 2022. Effects of light and ambient temperature on visual and thermal appraisals. In Routledge Handbook of Resilient Thermal Comfort, (pp.347-362).
 Kramer, Rick , Jos van Schijndel, and Henk Schellen. 2017. Dynamic setpoint control for museum indoor climate conditioning integrating collection and comfort requirements: Development and energy impact for Europe. Building and Environment, no. 118: 14-31. https://doi.org/10.1016/j.buildenv.2017.03.028
 Kramer, Rick P, L. Schellen Schellen, and A.W.M.Jos Van Schijndel. 2016. Impact of ASHRAE’s museum climate classes on energy consumption and indoor climate fluctuations: Full-scale measurements in museum Hermitage Amsterdam. Energy and Buildings, no. 130: 286-294. https://doi.org/10.1016/j.enbuild.2016.08.016
 Leger, Damien. 1994. The cost of sleep-related accidents: a report for the National Commission on Sleep Disorders Research. Sleep 17 (1): 84-93. https://doi.org/10.1093/sleep/17.1.84
 Luo, Wei, Rick Kramer, Maaike Kompier, Karin Smolders, Yvonne de Kort, and Wouter van Marken Lichtenbelt. 2023a. Effects of correlated color temperature of light on thermal comfort, thermophysiology and cognitive performance. Building and Environment, no. 231: 109944. https://doi.org/10.1016/j.buildenv.2022.109944
 Luo, Wei, Kramer, Kompier Rick, Smolders Maaike, de Kort Karin, Yvonne, and Wouter van Marken Lichtenbelt. 2023b. Personal control of correlated color temperature of light: Effects on thermal comfort, visual comfort, and cognitive performance. Building and Environment, no. 238: 110380. https://doi.org/10.1016/j.buildenv.2023.110380
 Madvari, Rohollah Fallah, Reyhaneh Sefidkar, fateme kargar shouroki, hossein fallah, and hamidreza torkian. 2024. Impact of Combined Ambient Temperature and Color Temperature on Thermal Comfort and Cognitive Performance in Educational Settings. http://dx.doi.org/10.2139/ssrn.4971614
 Malakoutikhah, Mahdi, Hadiseh Rabiei, Asma Zare, and Amir Omidvar. 2021. The simultaneous effect of ambient temperature and light intensity on performance: A cross-sectional study. International Archives of Health Sciences 8(3): 170-175. DOI: 10.4103/iahs.iahs_125_20.
 Mishra, Asit Kumar , and Maddali Ramgopal . 2014. Thermal comfort field study in undergraduate laboratories–An analysis of occupant perceptions. Building and Environment, no. 76: 62-72. https://doi.org/10.1016/j.buildenv.2014.03.005
 Mohammadi, Abbas, Leila Nematpour, and Behzad Fouladi Dehaghi. 2022. Reader fatigue–Electroencephalography findings: A case study in students. Work 71 (1): 209-214. https://doi.org/10.3233/WOR-205121
 Pradhan, Surakshya, Youjin Jang , and Hardik Chauhan. 2024. Investigating effects of indoor temperature and lighting on university students’ learning performance considering sensation, comfort, and physiological responses. Building and Environment, no. 253: 111346. https://doi.org/10.1016/j.buildenv.2024.111346
 Qian, Liang, Xiwen Zeng, Xiaorong Liu, and Li Peng. 2025. The impact of varied correlated color temperatures on visual comfort in museum exhibitions: integrating physiological and subjective assessments. Journal of Asian Architecture and Building Engineering 24 (3): 1836-1850. https://doi.org/10.1080/13467581.2024.2342856
 Rodríguez, Carolina M, María Camila Coronado, and Juan Manuel Medina. 2021. Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Building and Environment, no. 194: 107682. https://doi.org/10.1016/j.buildenv.2021.107682
 Romero, Pilar, Víctor Valero-Amaro , Sergio Rubio, and María Teresa Miranda.2024.An analysis of thermal comfort as an influencing factor on the academic performance of university students.Education Sciences 14 (12): 1340. https://doi.org/10.3390/educsci14121340
 Sundell, Jan. 2004. On the history of indoor air quality and health. Indoor Air, 14.
 te Kulve, Marije, Schellen L, Schlangen L, van Marken Lichtenbelt, W. 2016. The influence of light on thermal responses. Acta Physiologica 216 (2): 163-185.
 Te Kulve, Marije, and van Marken Lichtenbelt W Schlangen L. 2018. Interactions between the perception of light and temperature. Indoor Air 28 (6): 881-891. https://doi.org/10.1111/ina.12500
 Toftum, Jørn, Anders Thorseth, Jakob Markvart, and Ásta Logadóttir . 2018. Occupant response to different correlated colour temperatures of white LED lighting. Building and Environment, no. 143: 258-268 https://doi.org/10.1016/j.buildenv.2018.07.013.
 Tohidi, Mohammad, Karen Fatahi, and Maryam Beigi. 2025. Investigating the effect of ambient temperature, sound type, and noise level on the heart rate of the elderly. Experimental Gerontology, no. 208: 112829. https://doi.org/10.1016/j.exger.2025.112829
 Torriani, Giulia, Giulia Lamberti, Giacomo Salvadori, Fabio Fantozzi, and Francesco Babich. 2023. Thermal comfort and adaptive capacities: Differences among students at various school stages. Building and Environment, no. 237: 110340. https://doi.org/10.1016/j.buildenv.2023.110340
 van Marken Lichtenbelt, Wouter, Mark Hanssen, Hannah Pallubinsky, Boris Kingma, and Lisje Schellen. 2017. Healthy excursions outside the thermal comfort zone. Building Research & Information 45 (7): 819-827. https://doi.org/10.1080/09613218.2017.1307647
 Wang, Zitong, F Yao u , and Weijun Gao.2024.The crossed and interaction effects of indoor light and thermal factors on human perceptions. Developments in the Built Environment, no. 17: 100339. https://doi.org/10.1016/j.dibe.2024.100339
 Yu, Kuan-Heng , Yi-An Chen , Emanuel Jaimes, Wu-Chieh Wu, Kuo-Kai Liao, Jen-Chung Liao, Kuang-Chin Lu , Wen-JennSheu, and Chi-ChuanWang  . 2021. Optimization of thermal comfort, indoor quality, and energy-saving in campus classroom through deep Q learning. Case Studies in Thermal Engineering, no. 24: 100842. https://doi.org/10.1016/j.csite.2021.100842
 Zheng, Peiping, RunmingYao, James O'Donnell, Eugene Mohareb , Prashant Kumar, ChristopherPain, Xizhen Huang, and Baizhan Li. 2025. A comprehensive review of thermal comfort evaluation methods and influencing factors for urban parks. Building and Environment, no. 267: 112159. https://doi.org/10.1016/j.buildenv.2024.112159
 Zhu, Yingying, Minqi Yang, Ying Yao, Xiao Xiong, Xiaoran Li, Guofu Zhou, and Ning Ma. 2019. Effects of illuminance and correlated color temperature on daytime cognitive performance, subjective mood, and alertness in healthy adults. Environment and Behavior 51 (2): 199-230. https://doi.org/10.1177/0013916517738077