Analysis of Structural Mechanisms in Transformable Roofs: Prominent Global Examples

Document Type : Original

Authors

1 Assistant Professor, Faculty of Architecture and Art, University of Kashan

2 MSc Student of Architectural Technology Engineering, University of Kashan

3 Ph.D Candidate in Architecture, University of art,

Abstract

In recent years, the use of deployable structures has drawn the attention of many architects and engineers due to their flexibility. By providing favorable conditions for spaces and creating dynamics and flexibility in buildings, transformable roofs have been used in many global projects. In this research, the structural mechanisms of transformable roofs are investigated and analyzed. The transformation mechanism of these roofs is classified here into four groups: rigid, membrane, scissor, and umbrella mechanisms. While explaining the processes and the mode of movement in each mechanism, one prominent project is analyzed as an example of each group. Then, 60 examples of transformable roof structures built around the world during the last six decades are briefly analyzed. The results of this study show that transformable roofs are used extensively in stadiums and sports centers. The rigid and membrane mechanisms are the most used mechanisms for transformable roofs and truss and cable structures are the most used systems. These roofs are used to cover spans of more than 300 meters. The span-to-thickness ratio of the roof changes from about 30 to 240, where the highest value is for membrane mechanisms. The cover material for retractable roofs in all four groups includes lightweight materials including Teflon, ETFE, and PVC.

Keywords


ـ احمدنژادکریمی، مجید، مازیار آصفی، و فرزین حق‌پرست. ۱۳۹۵. الگوی سازه‌ای حرکتی سقف‌های باز و بسته‌شوندۀ منحنی‌شکل توسط میله‌های متحرک. نقش جهان ۶ (۳): ۲۷ـ۳۷.
ـ بانی مسعود، امیر. ۱۳۹۵. تاریخ معماری غرب. تهران: خاک.
ـ تقی‌زاده، کتایون، محمود گلابچی، و لادن وجدانزاده. ۱۳۹۷. معماری تغییر فرم‌پذیر. تهران: دانشگاه تهران.
ـ سرکرده‌ئی، الهام، احمد جامعی، و محمدرضا مجاهدی. ۱۳۸۹. بررسی انواع سقف‌های باز و بسته‌شونده و ملاحظات مرتبط با آن‌ها. ارائه‌شده در اولین همایش ملی فناوری‌های نوین در علوم مهندسی. تهران.
ـ صادقپور، امیرحسین، و فائزه تفرشی. ۱۴۰۰. ارزیابی انواع مکانیزم‌های تغییر شکل در ساختمان پل‌های متحرک. جاده ۲۹ (۱۰۹): ۱۹ـ۳۴.
ـ صادقپور، امیرحسین، و نرگس یاوری. ۱۴۰۱. ارزیابی مکانیزم‌های پویایی در نمای ساختمان. دوفصلنامه انرژی‌های تجدیدپذیر و نو ۹ (۲): ۱۰۱ـ۱۱۲.
ـ عالمی، بابک، شهرام پوردیهیمی، و سعید مشایخ فریدنی. ۱۳۹۵. سازه، فرم و معماری. مطالعات معماری ایران ۹ (۵): ۱۲۳ـ۱۴۰.
ـ قوچانی، محیا، محمد تاجی، و مجتبی دربانیان. ۱۳۹۸. کاربرد سقف‌های متحرک به‌منظور آماده‌سازی حیاط مرکزی مساجد جهت اسکان موقت در شرایط بحران. شهر ایمن 2 (۵): ۶ـ۱۹.
ـ گودرزی، رفیدا، و حشمت‌اله متدین. ۱۳۹۰. طراحی فضایی برای اجرای هنرهای نمایشی با کاربرد سازۀ متحرک و باز و بسته‌شونده. پایان‌نامه کارشناسی ارشد دانشگاه تهران، ۱۳۹۰.
ـ محمدیان‌منصور، صاحب، و سینا فرامرزی. ۱۳۹۲. بررسی وجود نظم شبه تناوبی در ساختار هندسی پتکانه. نشریه هنرهای زیبا ـ معماری و شهرسازی 18 (۱): 43ـ54.
ـ موسوی، ‌سیده‌ فائزه، و حمیدرضا ‌داودآبادی‌فراهانی. ۱۳۹۸. ارائۀ طرح ترکیبی از سازه‌های اوریگامی و قیچی‌سان به‌عنوان سایه‌بان‌های متحرک متصل به ساختمان. نخبگان علوم و مهندسی ۴ (۱): ۴۰ـ۵۲.
ـ  Akgün, Yenal. 2010. A Novel Transformation Model for Deployable Scissor ـ hinge. Structures Engineers. 21.
 ـ Akgün, Yenal, Walter Haase, and Werner Sobek. 2007. Proposal for a New Scissor ـ hinge Structure to Create Transformable and Adaptive Roofs. In Proceedings IASS 2007 (International Association of Spatial Structures) Symposium.
 ـ Arnouts, Liesbeth IW, Thierry J Massart, Niels De Temmerman, and PZ Berke. 2020. Multi ـ objective Optimisation of Deployable Bistable Scissor Structures. Automation in Construction. 114: 103 ـ 154.
 ـ Asefi, Maziar, Sh Valadi, and Elia Ebrahimi Salari. 2013. New Proposal for a Retractable Roof Over a Courtyard in Tabriz Islamic Art University. International Journal of Architecture & Urban Planning (IJAUP). 23: 113 ـ 20.
 ـ Bhavana, B, and M Shilpa. 2018. Modeling and Analysis of Retractable Roofs. International Journal of Applied Engineering Research. 13: 89 ـ 93.
 ـ Chen, Yao, Linzi Fan, and Jian Feng. 2017. Kinematic of Symmetric Deployable Scissor ـ hinge Structures with Integral Mechanism Mode. Computers & Structures. 191: 140 ـ 52.
 ـ Dinevari, Najmeh Faghih, Yaser Shahbazi, and Feray Maden. 2021. Geometric and Analytical Design of Angulated Scissor Structures. Mechanism and Machine Theory. 164: 104 ـ 124.
 ـ El ـ Zanfaly, Dina Ezz ElDin. 2011. Active Shapes: Introducing Guidelines for Designing Kinetic Architectural Structures. Massachusetts Institute of Technology.
 ـ Elkhayat, Youssef Osama. 2014. Interactive Movement in Kinetic Architecture. JES Journal of Engineering Sciences. 42: 816 ـ 845.
 ـ Hemmerling, Marco. 2017. Architecture by Numbers. An Interdisciplinary Approach Towards Computational Design and Architectural Geometry.
 ـ Jensen, Frank Vadstrup. 2005. Concepts for Retractable Roof Structures. University of Cambridge.
 ـ Liao, Yuan, and Sudarshan Krishnan. 2017. Geometric Design and Kinematics of Curvilinear Deployable Structures. In Proceedings of IASS Annual Symposia. 1 ـ 10. International Association for Shell and Spatial Structures (IASS).
 ـ Maden, Feray, Yenal Akgün, Gökhan Kiper, Şebnem Gür, Müjde Yar, and Koray Korkmaz. 2019. A Critical Review on Classification and Terminology of Scissor Structures. Journal of the International Association for Shell and Spatial Structures. 60: 47 ـ 64.
 ـ Megahed, Naglaa Ali. 2017. Understanding Kinetic Architecture: Typology, Classification, and Design Strategy. Architectural Engineering and Design Management. 13: 130 ـ 146.
 ـ Mira, L Alegria, R Filomeno Coelho, Ashley P Thrall, and Niels De Temmerman. 2015. Parametric Evaluation of Deployable Scissor Arches. Engineering Structures. 99: 479 ـ 491.
 ـ Mollaert, M. 1996. Retractable Membrane Roofs. WIT Transactions on the Built Environment. 24.
 ـ Pawlak ـ Jakubowska, Anita, and Krystyna Romaniak. 2020. Retractable Roofs in Engineering Education. Technical Transactions/Czasopismo Techniczne. 13.
 ـ Pellegrino, Sergio. 2001. Deployable Structures in Engineering. Deployable Structures (Springer).
 ـ Ramzy, Nelly, and Hatem Fayed. 2011. Kinetic Systems in Architecture: New Approach for Environmental Control Systems and Context ـ Sensitive Buildings. Sustainable Cities and Society. 1: 170 ـ 177.
 ـ Sharaidin, Kamil. 2014. Kinetic Facades: Towards Design for Environmental Performance. RMIT University.
 ـ Siotor, Igor G, and Thomas Hermeking. 2017. Convertible Architecture with Lightweight Technology. In Proceedings of IASS Annual Symposia, 1 ـ 8. International Association for Shell and Spatial Structures (IASS).
 ـ Smith, Julie Katherine. 2003. Current Technologies and Trends of Retractable Roofs. Massachusetts Institute of Technology.
 ـ Takahashi, Kenryo, Axel KÖrner, Valentin Koslowski, and Jan Knippers. 2016. Scale Effect in Bending ـ Active Plates and a Novel Concept for Elastic Kinetic Roof Systems. In Proceedings of IASS Annual Symposia, 1 ـ 10. International Association for Shell and Spatial Structures (IASS).
 ـ Temmerman, Niels, and Lara Alegria Mira. 2011. Development of a Sustainable Construction System for Temporary Structures.
 ـ Van der Wijk, V, G Kiper, and A Yasır. 2015. Synthesis and Experiments of Inherently Balanced Umbrella Canopy Designs. In Proceedings of the TrC ـ IFToMM Symposium on Theory of Machines and Mechanisms.
 ـ Yar, Müjde, Koray Korkmaz, Gökhan Kiper, Feray Maden, Yenal Akgün, and Engin Akta. 2017. A Novel Planar Scissor Structure Transforming Between Concave and Convex Configurations, The International Journal of Computational Methods and Experimental Measurments. 5: 442 ـ 450.
 ـ You, Z, and J Springer. 2000. A New Approach to Design of Retractable Roofs. In IUTAM ـ IASS Symposium on Deployable Structures: Theory and Applications. 477 ـ 483. Springer.
 
 
 ـ URL 2: https://www.kugel ـ architekten.com/
 ـ URL 6: https://en.wikipedia.org/wiki/Retractable_roof.Accessed 22 ـ November ـ 2022.
 ـ URL7: https://www.businesswire.com/news/home/20160518005426/en/New ـ Vikings ـ Football ـ Stadium ـ First–in ـ the ـ U.S. ـ to ـ Use ـ Lightweight ـ ETFE ـ Film ـ Roof. Accessed 10 ـ January ـ 2022.
 ـ URL 9: https://www.pinterest.com/rollacover/_created.Accessed 22 ـ November ـ 2022.
 ـ URL 11: https://www.mhi.com/products/living/culture_sports_movable_roof.html.Accessed 22 ـ November ـ 2022.
 ـ URL 14: https://www.johndesmond.com/blog/design/lilles ـ grand ـ stadium. Accessed 10 ـ January ـ 2022