Thermal Performance of dorchah, kolak, and kharkhona during the Warm Period of the Year in the Vernacular Houses of the Sistan Region

Document Type : Original

Authors

1 Ph.D. candidate, Faculty of Architecture and Urbanism, Shahid Beheshti University

2 Associate Professor, Faculty of Architecture and Urbanism, Shahid Beheshti University

3 Professor, Faculty of Architecture and Urbanism, Shahid Beheshti University

Abstract

 Thermal comfort is one of the most important issues in architecture. Although studies in this field began in the early twentieth century yielding significant achievements, one of today’s architectural challenges is to provide thermal comfort with the least dependence on fossil fuels for the inhabitants of buildings. At the same time, it seems that vernacular architecture, which is tested through centuries of experience, has had significant success in creating climate-responsive strategies that can still be utilized to design passive and sustainable architecture in different climates. Vernacular architecture of the region of Sistan is an example that has been able to make indoor climatic conditions often acceptable for residents. Therefore, through a case study, this paper investigates the performance of these strategies and their roles in providing thermal comfort in indoor spaces in Sistan during the warm period of the year. For this purpose, a vernacular building was selected, and through qualitative and quantitative analysis, the performance of dorchah, kolak, and kharkhona strategies that help provide thermal comfort in the warm period of the year was investigated. Their impact on indoor air temperature, relative humidity, wind speed, and thermal comfort have been analyzed. The results show that although in the warm period of the year, the indoor environmental parameters of spaces are not in the range of classic thermal comfort temperatures (23-27 °C), the use of climatic strategies has a significant effect on improving these parameters at different times of the day. In addition, indoor environmental parameters with the application of kharkhona were in a good range during hot times of the day, while dorchah and kolak can make indoors tolerable when the outdoor environment is cooler.

Keywords


پوردیهیمی، شهرام. 1390. زبان اقلیمی در طراحی محیطی پایدار: کاربرد اقلیم شناسی در برنامه‌ریزی و طراحی محیط. تهران: دانشگاه شهید بهشتی.
پوردیهیمی، شهرام، و بهرام گسیلی. 1394. بررسی شناسه‌های حرارتی جداره‌های پوسته خارجی بنا؛ مطالعۀ موردی: مناطق روستایی اردبیل. مسکن و محیط روستا 150: 53ـ70.
حیدری، ابوالفضل، و جمشید داوطلب. 1398. نقش خارخنه در تعدیل دمایی فضای زیست در مسکن روستایی مؤثر در ارتقای پایداری معماری؛ مطالعۀ موردی: مسکن روستایی سیستان. معماری و شهرسازی پایدار 7 (2): 55ـ۶۷.
ـــــــ . 1399. بررسی و شناخت اثر خارخنه بر میزان سرعت باد در مسکن بومی منطقۀ سیستان. جغرافیا و آمایش شهری-منطقه‌ای 10 (35): 49ـ۶۴.
داوطلب، جمشید، محمدرضا حافظی، و مرتضی ادیب. 1395. بررسی میزان اثر و نقش پوشش گیاهی بر متغیرهای تعیین‌کنندۀ آسایش حرارتی فضای باز؛ مطالعۀ موردی: اقلیم گرم و خشک سیستان. صفه 26 (4): 19ـ۴۱.
داوطلب، جمشید، و ابوالفضل حیدری. 1399. بررسی تحلیلی-عددی میزان اثر رطوبتی خارخنه در مسکن بومی سیستان. مسکن و محیط روستا 39 (169): 89ـ۱۰۰.
رازجویان، محمود. 1388. آسایش به‌وسیلۀ معماری همساز با اقلیم. تهران: دانشگاه شهید بهشتی.
سازمان هواشناسی. 1398. آمار اقلیمی ایستگاه هواشناسی زابل (دورۀ 1962ـ2015 میلادی).
سلیقه، محمد، فرامرز بریمانی، و مرتضی اسمعیل‌نژاد. 1387. پهنه‌بندی اقلیمی استان سیستان و بلوچستان. جغرافیا و توسعه 12: 101ـ116.
شاعری، جلیل، محمود یعقوبی، محمدعلی آبادی، و رزا وکیلی نژاد. 1396. بررسی دما، رطوبت نسبی و سرعت جریان باد در ساختمان‌های سنتی مسکونی بوشهر در فصل گرما؛ نمونۀ موردی: عمارت گلشن و عمارت دهدشتی. نشریه هنرهای زیبا، معماری شهرسازی 22 (4): 93ـ۱۰۵.
طاهباز، منصوره. 1392. دانش اقلیمی طراحی معماری. تهران: دانشگاه شهید بهشتی.
طاهباز، منصوره، و شهربانو جلیلیان. 1390. شاخصه‌های همسازی با اقلیم در مسکن روستایی استان گیلان. مسکن و محیط روستا 135: 23ـ42.
ـــــــــ . 1395. ‌صرفه‌جویی در مسکن بوم‌آورد روستاهای استان سمنان. مسکن و محیط روستا 153: 3ـ22.
مرکز آمار ایران. 1400. آخرین نقشه‌های تقسیمات سیاسی ایران.
معماریان، غلامحسین، اصغر محمدمرادی، سید مصطفی حسینعلی‌پور، ابوالفضل حیدری، و سعیده دودی. 1396. تحلیل رفتار باد در تهویۀ طبیعی مسکن بومی روستای قلعه نوی سیستان به‌کمک CFD. مسکن و محیط روستا 157: 21ـ36.
مولانایی، صلاح‌الدین، و سارا سلیمانی. 1395. عناصر باارزش معماری بومی منطقۀ سیستان بر مبنای مؤلفه‌های اقلیمی معماری پایدار. باغ نظر 13 (41): 57ـ66.
 Alev, Ü., L. Eskola, E. Arumägi, J. Jokisalo, A. Donarelli, K. Siren, T. Broströmc, and T. Kalamees. 2014. ‘Renovation alternatives to improve energy performance of historic rural houses in the Baltic sea region’. Energy and Buildings 77: 58-66.
 ANSI/ASHRAE. 2017. Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard.
 ASHRAE. 2004. Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard.
 ASHRAE Handbook. 2001. Fundamentals. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
 Baran, M., M. Yıldırım, and A. Yılmaz. 2011. Evaluation of ecological design strategies in traditional houses in Diyarbakir, Turkey. Journal of Cleaner Production 19: 609-19.
 Bassaran, T. 2011. Thermal analysis of the domed vernacular houses of Harran, Turkey. Indoor Built Environ 20 (5): 543-554.
 Bodach, S., W. Lang, and J. Hamhaber. 2014. Climate responsive building design strategies of vernacular architecture in Nepal. Energy and Buildings 81: 227-242.
 Ca˜nas, I., and S. Martin. 2004. Recovery of spanish vernacular construction as a model of bioclimatic architecture. Building and Environment 39: 1477-1495.
 Caˆndido, C., R. J. de Dear, R. Lamberts, and L. Bittencourt. 2010. Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Building and Environment 45: 222-229.
 Davtalab, J., and A. Heidari. 2021. The effect of Kharkhona on outdoor thermal comfort in hot and dry climate: A case study of Sistan region in Iran. Sustainable Cities and Society 65. 1-11. DOI: 10.1016/j.scs.2020.102607
 Dili, A. S., M. A. Naseer, and T. Z. Varghese. 2010. Passive environment control system of Kerala vernacular residential architecture for a comfortable indoor environment: A qualitative and quantitative analyses. Energy and Buildings 42 (6): 917-27.
 Dincyurek, O., F. H. Mallick, and I. Numan. 2003. Cultural and environmental values in the arcaded Mesaorian houses of Cyprus. Building and Environment 38 (12): 1463-1473.
 Du, X., R. Bokel, and A. v. den Dobbelsteen. 2014. Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and Environment 82: 215–27.
 Fernandes, J., R. Mateus, L. Bragança, and J. J. C. da Silva. 2015. Portuguese vernacular architecture: The contribution of vernacular materials and design approaches for sustainable construction. Architectural Science Review 58 (4): 324-336.
 Fezzioui, N., M. Khoukhi, Z. Dahou, K. A. Mokhtar, and S. Larbi. 2009. Bioclimatic architectural design of Ksar de Kenadza: south-west area of Algeria hot and dry climate. Architectural Science Review 52 (3): 221-228.
 Foruzanmehr, A. R., and M. Vellinga. 2011. Vernacular architecture: Questions of comfort and practicability. Building Research & Information 39 (3): 274-285.
 Hatamipour, M. S., H. Mahiyar, and M. Taheri. 2007. Evaluation of existing cooling systems for reducing cooling power consumption. Energy and Buildings 39: 105-112.
 Heidari, A., S. Sahebzadeh, and Z. Dalvand. 2017. Natural ventilation in vernacular architecture of Sistan, Iran; classification and CFD study of compound rooms. Sustainability 9: 1-19. DOI:10.3390/su9061048
 Holmes, M. J., and J. N. Hacker. 2007. Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy and Buildings 39: 802-814.
 Huang, L., Q. Ouyang, Y. Zhu, and L. Jiang. 2013. A study about the demand for air movement in warm environment. Building and Environment 61: 27-33.
 Huang, L., N. Hamza, B. Lan, and D. Zahi. 2016. Climate-responsive design of traditional dwellings in the cold-arid regions of Tibet and a field investigation of indoor environments in winter. Energy and Buildings 128: 697-712.
 Huang, Z., J. Liu, H. Hao, and Y. Dong. 2017. Indoor humidity environment in Huizhou traditional vernacular dwellings of China in summer. Procedia Engineering 205: 1350-1356.
 Huang, Z., M. Yu, L. Zheng, C. Gong, and Z. Wu. 2017. One-year field study on indoor environment of Huizhou traditional vernacular dwellings in China. Procedia Engineering 205: 1316-1322.
 Humphreys, M. A. 1970. A simple theoretical derivation of thermal comfort conditions. Journal of the Institute of Heating and Ventilating Engineers 33: 95-98. Quoted in Nicol, F., and M. Humphreys. 2010. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Building and Environment 45 (1): 16.
 Humphreys, M. A, J. F. Nicol, and I. A. Raja. 2007. Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in Building Energy Research 1: 55-88.
 Hyde, R., A. K. Upadhyay, and A. Treviño. 2016. Bioclimatic responsiveness of La Casa de Luis Barragán, Mexico city, Mexico. Architectural Science Review 59 (2): 91-101.
 Kim, D. K. 2006. The natural environment control system of Korean traditional architecture: Comparison with Korean contemporary architecture. Building and Environment 41: 1905-1912.
 Kubota, T., and D. H. C. Toe. 2015. Application of passive cooling techniques in vernacular houses to modern urban houses: A case study of Malaysia. Procedia - Social and Behavioral Sciences 179: 29-39.
- Kumar, S., M. K. Singh, V. Loftness, J. Mathur, and S. Mathur. 2016. Thermal comfort assessment and characteristics of occupant’s behaviour in naturally ventilated buildings in composite climate of India. Energy for Sustainable Development 33: 108-121.
 Larsen, S. F., C. Filippín, and S. González. 2012. Study of the energy consumption of a massive free-running building in the Argentinean northwest through monitoring and thermal simulation. Energy and Buildings 47: 341-352.
 Lee, K. H., D. W. Han, and H. J. Lim. 1996. Passive design principles and techniques for folk houses in Cheju island and Ullung island of Korea. Energy and Buildings 23: 207-216. Quoted in Oikonomou, A., and F. Bougiatioti. 2011. Architectural structure and environmental performance of the traditional buildings in Florina, NW Greece. Building and Environment 46, 669.
 Manu, S., G. S. Brager, R. Rawal, A. Geronazzo, and D. Kumar. 2018. Performance evaluation of climate responsive buildings in India: Case studies from cooling dominated climate zones. Building and Environment 0(0): 1–25. DOI: 10.1016/j.buildenv.2018.10.063
 Nguyen, A. T., Q. B. Tran, D. Q. Tran, and S. Reiter. 2011. An investigation on climate responsive design strategies of vernacular housing in Vietnam. Building and Environment 46: 2088-2106.
 Nicol, F. 2004. Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings 36 (7): 628-37.
 Nicol, F., and S. Roaf. 2005. Post-occupancy evaluation and field studies of thermal comfort. Building Research & Information 33 (4): 338-46. Quoted in Indraganti, Madhavi. 2010. Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India. Applied Energy 87: 877.
 Nicol, J.F. 1974. An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Annals of Human Biology 1 (4): 411-26.
 Oikonomou, A., and F. Bougiatioti. 2011. Architectural structure and environmental performance of the traditional buildings in Florina, NW Greece. Building and Environment 46 (3): 669-89.
 Ooka, R. 2002. Field study on sustainable indoor climate design of a Japanese traditional folk house in cold climate area. Building and Environment 37: 319-329. Quoted in Oikonomou, A., and F. Bougiatioti. 2011. Architectural structure and environmental performance of the traditional buildings in Florina, NW Greece. Building and Environment 46 (3), 669.
 Philokyprou, M., A. Michael, E. Malaktou, and A. Savvides. 2017. Environmentally responsive design in eastern mediterranean. The case of vernacular architecture in the Coastal, lowland and mountainous regions of Cyprus. Building and Environment 111: 91-109.
 Prasetyo, Y. H., M. N. F. Alfata, and A. R. Pasaribu. 2014. Typology of Malay traditional house Rumah Lontiok and its response to the thermal environment. Procedia Environmental Sciences 20: 162-171.
 Priya, R. S., M. C. Sundarraja, S. Radhakrishnan, and L. Vijayalakshmi. 2012. Solar passive techniques in the vernacular buildings of Coastal regions in Nagapattinam, TamilNadu, India: A qualitative and quantitative analysis. Energy and Buildings 49: 50-61.
 Radhakrishnan, S., R. S. Priya, S. Nagan, and M. C. Sundarraja. 2011. Climate responsive traditional architecture of Chettinadu housing in Tamilnadu, India: A qualitative and quantitative analysis during summer. International Journal of Ventilation 10 (1): 89-97.
 Rubio-Bellido, C., J. P. Arcas, and J. M. C. Lainez. 2016. Understanding climatic traditions: A quantitative and qualitative analysis of historic dwellings of Cadiz. Indoor and Builtuilt Environment 0(0): 1-17. DOI: 10.1177/1420326X16682580
 Shastry, V., M. Mani, and R. Tenorio. 2016. Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Architectural Science Review 59 (1): 12-26.
 Verbeke, S., and A. Audenaert. 2018. Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews 82: 2300-2318.
 Victoria, J., S. A. Mahayuddin, W. A. Z. W. Zaharuddin, S. N. Harun, and B. Ismail. 2017. Bioclimatic design approach in Dayak traditional longhouse. Procedia Engineering 180: 562-570.
 Xu, H., Q. Huang, G. Liu, and Q. Zhang. 2016. A quantitative study of the climate-responsive design strategies of ancient timber-frame halls in northern China based on field measurements. Energy and Buildings 133: 306–320.
 Yang, X., H. Wang, and Y. Xue. 2019. Research on the inter-zonal heat transfer coefficient in thermally stratified environment of floor-level air-supply system. In 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), edited by Zhaojun Wang, Yingxin Zhu, Fang Wang, Peng Wang, Chao Shen, and Jing Liu, 905-914. China, harbin: Springer.
 https://comfort.cbe.berkeley.edu/?_ga=2.82037462.1701562533.1646508744-1480926566.1487866447
 https://kestrelmeters.com/products/kestrel-4500-weather-meter
 http://www.kimocanada.com/anglais/Images/bandeaux/pdf/FT%20kistock%20class50-an.pdf
 https://www.reedinstruments.com/product/reed-instruments-8778-heat-stress-meter